Intracellular processing of endocytosed triglyceride-rich lipoproteins comprises both recycling and degradation.
نویسندگان
چکیده
The current study was performed to investigate the intracellular fate of triglyceride-rich lipoproteins. Triglyceride-rich lipoproteins are responsible for the delivery of lipids to various tissues, however, their intracellular pathway has not yet been elucidated. Here radiolabeled triglyceride-rich lipoproteins, associated with lipoprotein lipase, were used for the quantitative evaluation of the intracellular metabolism. Pulse chase experiments showed that after 90 minutes approximately 60% of the labeled protein, mainly apoproteins E and C, was released intact into the medium, where it re-associates with lipoproteins. Apoprotein B, in contrast, was degraded, following the same pathway as the apoprotein B from low density lipoproteins. In kinetic experiments uptake and intracellular fate of triglyceride-rich lipoproteins was compared to that of transferrin and low density lipoproteins. These experiments revealed that apoproteins were retained inside the cell much longer than transferrin, and unlike low density lipoproteins were not degraded. Using immunofluorescence it was shown that apoprotein E and lipoprotein lipase follow a distinct route from the sorting compartment to the surface, which is clearly distinguishable from the perinuclear transferrin recycling compartment. In contrast, the fluorescence labeled lipids were delivered to lysosomal compartments. The data presented here show that surface proteins of triglyceride-rich lipoproteins, such as apoproteins E and C and lipoprotein lipase follow a recycling pathway, whereas lipids and high molecular mass core proteins are degraded.
منابع مشابه
Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation.
After internalization of triglyceride-rich lipoproteins (TRL) in hepatoma cells, TRL particles are immediately disintegrated in the early endosomal compartment. This involves the targeting of lipids and apoprotein B along the degradative pathway and the recycling of TRL-derived apoE through recycling endosomes. Re-secretion of apoE is accompanied by the concomitant association of apoE and cellu...
متن کاملApolipoprotein E recycling: implications for dyslipidemia and atherosclerosis.
After receptor-mediated endocytosis, the intracellular fate of triglyceride-rich lipoproteins (TRLs) is far more complex than the classical degradation pathway of low-density lipoproteins. Once internalized, TRLs disintegrate in peripheral endosomes, followed by a differential sorting of TRL components. Although core lipids and apolipoprotein B are targeted to lysosomes, the majority of TRL-der...
متن کاملLow Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E
BACKGROUND Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction wi...
متن کاملRecycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization.
After receptor-mediated endocytosis of triglyceride-rich lipoproteins (TRL) into the liver, TRL particles are immediately disintegrated in peripheral endosomal compartments. Whereas core lipids and apoprotein B are delivered for degradation into lysosomes, TRL-derived apoE is efficiently recycled back to the plasma membrane. This is followed by apoE re-secretion and association of apoE with hig...
متن کاملRecycling of apolipoprotein E and lipoprotein lipase through endosomal compartments in vivo.
We have recently described a novel recycling pathway of triglyceride-rich lipoprotein (TRL)-associated apolipoprotein (apo) E in human hepatoma cells. We now demonstrate that not only TRL-derived apoE but also lipoprotein lipase (LPL) is efficiently recycled in vitro and in vivo. Similar recycling kinetics of apoE and LPL in normal and low density lipoprotein receptor-negative human fibroblasts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1999